Combinatorial Networks Week 8, May 6-7

Matching

• **Definition.** For G, a subset $U \subset V$ is called a vertex cover(or VC), if every edge in G is incident to a vertex in U.

 $\Leftrightarrow U^c$ is an independent set in G.

- Duality Theory. any $|M| \le \text{any } |VC|$ $\Leftrightarrow max|M| \le min|VC|$
- Theorem1(Konig, 1931). For bipartite G, max|M| = min|VC|.
- **Proof.** Let *M* be the maximum matching in *G*.

A *M*-alternating path *P* is "good", if one of the ends in *P* is in *A* and not *M*-matched. We define a subset *U*, such that for any edge $ab \in M$, we will place exactly one of ab in *U*.

$$\begin{cases} b \in U, & \text{if } \exists \text{ "good" } M-\text{alternating path having } b \text{ as an end} \\ a \in U, & \text{otherwise} \end{cases}$$

It satisfies for U to be VC.

Suppose not, $\exists ab \in E(G)$, $s.t.a \notin U, b \notin U$, which implies $ab \notin M$.

Claim1. $b' \in B, s.t.ab' \in M$.

Proof. Suppose not, then a id not M-matched.

As M is max, b must be M-matched.

By definition, ab is a "good" M-alternating path.(For $b \in B, b \in U$, iff b is M-matched and \exists "good" M-alternating path having b as an end) (*)

Hence, $b \in U$, a contradiction!

Claim2. \exists "good" *M*-alternating path having *b* as an end point.

Proof. By the definition of U, since $a \notin U$, we have $b' \in U$.

Thus, there is a "good" M-alternating path P', having b' as its end.

Let

$$P = \begin{cases} P'b, & b \in P' \\ P'b'ab, & b \notin P' \end{cases}$$

Thus, P is a "good" M-alternating path having b as an end.

If b is not M-matched, then P is a M-augumenting path, which is contrast with Berge's Theorem(as M is max).

Thus, b isn't M-matched.

By (*), we know $b \in U$. Contradiction again.

- **Theorem2.** For bipartite G with m edges, let M be a matching. There is an O(m) time algorithm for finding a M-augumenting path(if it exists).
- Corollary1. For bipartite G, $\exists O(nm)$ time algorithm for finding a maximum matching.
- **Proof.** Apply theorem2 by at most $\frac{n}{2}$ times.
- Proof of theorem2. Define a digraph as follows:

(1) direct the edges in M from B to A, and other edges from A to B.

(2) add new vertex x and arcs from x to all unmatched vertices in A.

We will take a BSF-tree T with root x. It is enough to see if there is an unmatched vertex $b \in B$ in T.

--If \exists such b, then \exists a directed path from unmatched vertex $a \in A$ to b, which is an M-augumenting path.

- --otherwise, no such b, then, there is no M-augumenting path.
- Corollary2. Given a maximum matching in bipartite G, we can find the smallest VC in O(m) time.

Proof. By the proof of theorem 2 and the definition of U in Theorem 1.

• Corollary3. For bipartite G, $\exists O(nm)$ time algorithm for finding a minimum VC.

Proof. Combine Corollary1 and Corollary2.

Hopcroft-Karp theorem

- Theorem3(Hopcroft-Karp). For bipartite G, there is an $O(m\sqrt{n})$ time algorithm for finding a maximum matching in G.
- Lemma 1. For general graph, let M be a matching and P be a M-augumenting path with the least length. Let $M' = M \triangle P$. Then any M'-augumenting path P' satisfies that $|P'| \ge |P| + 2|P \cap P'|$.

Proof. If $P \cap P' = \emptyset$, i.e. P' shares no edges of P. Then P' is also an M-augumenting path.Since P is the shortest one, we have $|P'| \ge |P|$, done! If $|P \cap P'| \ge 1$

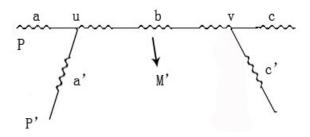


Figure 1:

From the figure, since P is the shortest M-augumenting path, $c + c' \ge a + b + c$

Similarly, $a + a' \ge a + b + c$ Thus, $c' \ge a + b, a' \ge b + c$ $|P'| \ge a' + b + c' \ge (b + c) + b + (a + b) = (a + b + c) + 2b = |P| + 2b \ge |P| + 2|P \cap P'|$

• Lemma2. Let M be a matching in bipartite G, then in time O(m), we can find a maximal collection of vertex-disjoint M-augumenting paths of the shortest length.

Proof. Similar to the previous proof.

--Find the first layer of the BFS-tree, in which there is an unmatched vertex in B. Then pick such a vertex b.

- --Back tracking to get a directed path P from x to b, which is of the shortest length.
- --Delete all vertices of P in the BFS-tree.

--Repeat.

Thus, obtain a maximal collection of M-augumenting paths of shortest length.

• H.K algorithm.

Let $M = \emptyset$

While there are M-augumenting path of length k

--Let k be the length of the shortest M-augumenting path

--Find a maximal collection of, say P_1,P_2,\cdots,P_t of vertex-disjoint M-augumenting path of length k

 $--\text{Let } M = M \bigtriangleup P_1 \bigtriangleup P_2 \bigtriangleup \cdots \bigtriangleup P_t$

• Proof of Hopcroft-Karp theorem. By lemma2, we can implement each iteration in O(m) time

Thus, it suffices to show that the *HK* algorithm stops in $\leq 2\sqrt{n}$ iterations.

Claim. In each iteration, the value of k is increasing.

Suppose claim holds. Then by the corollary, after \sqrt{n} iterations, $|M^*| \leq |M| + \sqrt{n}$. Therefore, after \sqrt{n} more iterations, this will stop.

Proof of claim. Let P_1, P_2, \dots, P_t be the max collection of M-augumenting path of length k.

Let $M' = M \bigtriangleup P_1 \bigtriangleup \cdots \bigtriangleup P_t$, P' be any M'-augumenting path.

We want to show $|P'| \ge k+1$.

1) P' is edge-disjoint with P_1, P_2, \cdots, P_t

Claim: P' is vertex-disjoint with P_1, P_2, \cdots, P_t .

Proof: Since P' is edge-disjoint with $P_1, P_2, \dots, P_t, |P'|$ is M-augumenting path.

Assume P' and P_t . has a common vertex a.

(A) If a is the middle point of P'.

Then a is M-matched. Thus, there is a common edge in P' and P_t

(B)If a is the end point of P'.

Then a is M-unmatched. Since, $M' = M \triangle P_1 \triangle \cdots \triangle P_t$, then a is M'-matched. Thus, P' is not M'-augumenting path. Contradiction!

2) $\exists P_t, s.t. P' \text{ and } P_t \text{ share a common edge.}$

Apply lemma to $P_t, M \bigtriangleup P_1 \bigtriangleup \cdots \bigtriangleup P_t - 1$ and P'

claim, P_t is also the $M riangle P_1 riangle \cdots riangle P_t - 1$ -augumenting path of shortest length.

On the other hand, P' is $(M \triangle P_1 \triangle \cdots \triangle P_t - 1) \triangle P_t$ -augumenting path by lemma1. Thus, $|P'| \ge |P_t| + 2|P' \cap P_t| \ge k + 2$