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Matching

• Definition. For G, a subset U ⊂ V is called a vertex cover(or VC), if every edge in G is
incident to a vertex in U .

⇔ U c is an independent set in G.

• Duality Theory. any |M | ≤ any |V C|
⇔ max|M | ≤ min|V C|

• Theorem1(Konig, 1931). For bipartite G, max|M | = min|V C|.

• Proof. Let M be the maximum matching in G.

A M−alternating path P is ′′good′′, if one of the ends in P is in A and not M−matched.

We define a subset U , such that for any edge ab ∈ M , we will place exactly one of ab in U .{
b ∈ U, if ∃ ′′good′′ M−alternating path having b as an end

a ∈ U, otherwise

It satisfies for U to be VC.

Suppose not, ∃ab ∈ E(G), s.t.a ̸∈ U, b ̸∈ U , which implies ab ̸∈ M .

Claim1. b′ ∈ B, s.t.ab′ ∈ M .

Proof. Suppose not, then a id not M−matched.

As M is max, b must be M−matched.

By definition, ab is a ′′good′′ M−alternating path.(For b ∈ B, b ∈ U , iff b is M−matched
and ∃ ′′good′′ M−alternating path having b as an end) (>)

Hence, b ∈ U , a contradiction!

Claim2. ∃ ′′good′′ M−alternating path having b as an end point.

Proof. By the definition of U , since a ̸∈ U , we have b′ ∈ U .

Thus, there is a ′′good′′ M−alternating path P ′, having b′ as its end.

Let

P =

{
P ′b, b ∈ P ′

P ′b′ab, b ̸∈ P ′

Thus, P is a ′′good′′ M−alternating path having b as an end.

If b is not M−matched, then P is a M−augumenting path, which is contrast with Berge’s
Theorem(as M is max).

Thus, b isn’t M−matched.

By (>), we know b ∈ U . Contradiction again.
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• Theorem2. For bipartite G with m edges, let M be a matching. There is an O(m) time
algorithm for finding a M−augumenting path(if it exists).

• Corollary1. For bipartite G, ∃O(nm) time algorithm for finding a maximum matching.

• Proof. Apply theorem2 by at most n
2 times.

• Proof of theorem2. Define a digraph as follows:

(1) direct the edges in M from B to A, and other edges from A to B.

(2) add new vertex x and arcs from x to all unmatched vertices in A.

We will take a BSF−tree T with root x.It is enough to see if there is an unmatched vertex
b ∈ B in T .

−−If ∃ such b, then ∃ a directed path from unmatched vertex a ∈ A to b, which is an
M−augumenting path.

−−otherwise, no such b, then, there is no M−augumenting path.

• Corollary2. Given a maximum matching in bipartite G, we can find the smallest VC in
O(m) time.

Proof. By the proof of theorem2 and the definition of U in Theorem1.

• Corollary3. For bipartite G, ∃O(nm) time algorithm for finding a minimum VC.

Proof. Combine Corollary1 and Corollary2.

Hopcroft-Karp theorem

• Theorem3(Hopcroft-Karp). For bipartite G, there is an O(m
√
n) time algorithm for

finding a maximum matching in G.

• Lemma1. For general graph, let M be a matching and P be a M−augumenting path with
the least length. Let M ′ = M △ P . Then any M ′−augumenting path P ′ satisfies that
|P ′| ≥ |P |+ 2|P ∩ P ′|.
Proof. If P ∩ P ′ = ∅, i.e. P ′ shares no edges of P . Then P ′ is also an M−augumenting
path.Since P is the shortest one, we have |P ′| ≥ |P |, done!
If |P ∩ P ′| ≥ 1

Figure 1:

From the figure, since P is the shortest M−augumenting path, c+ c′ ≥ a+ b+ c
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Similarly, a+ a′ ≥ a+ b+ c

Thus, c′ ≥ a+ b, a′ ≥ b+ c

|P ′| ≥ a′ + b+ c′ ≥ (b+ c) + b+ (a+ b) = (a+ b+ c) + 2b = |P |+ 2b ≥ |P |+ 2|P ∩ P ′|

• Lemma2. Let M be a matching in bipartite G, then in time O(m), we can find a maximal
collection of vertex-disjoint M−augumenting paths of the shortest length.

Proof. Similar to the previous proof.

−−Find the first layer of the BFS−tree, in which there is an unmatched vertex in B. Then
pick such a vertex b.

−−Back tracking to get a directed path P from x to b, which is of the shortest length.

−−Delete all vertices of P in the BFS−tree.

−−Repeat.

Thus, obtain a maximal collection of M−augumenting paths of shortest length.

• H.K algorithm.

Let M = ∅
While there are M−augumenting path of length k

−−Let k be the length of the shortest M−augumenting path

−−Find a maximal collection of, say P1, P2, · · · , Pt of vertex-disjoint M−augumenting path
of length k

−−Let M = M △ P1 △ P2 △ · · · △ Pt

• Proof of Hopcroft-Karp theorem. By lemma2, we can implement each iteration in
O(m) time

Thus, it suffices to show that the HK algorithm stops in ≤ 2
√
n iterations.

Claim. In each iteration, the value of k is increasing.

Suppose claim holds. Then by the corollary, after
√
n iterations, |M∗| ≤ |M |+

√
n. There-

fore, after
√
n more iterations, this will stop.

Proof of claim. Let P1, P2, · · · , Pt be the max collection of M−augumenting path of
length k.

Let M ′ = M △ P1 △ · · · △ Pt, P
′ be any M ′−augumenting path.

We want to show |P ′| ≥ k + 1.

1) P ′ is edge-disjoint with P1, P2, · · · , Pt

Claim: P ′ is vertex-disjoint with P1, P2, · · · , Pt.

Proof: Since P ′ is edge-disjoint with P1, P2, · · · , Pt, |P ′| is M−augumenting path.

Assume P ′ and Pt. has a common vertex a.

(A)If a is the middle point of P ′.

Then a is M−matched. Thus, there is a common edge in P ′ and Pt

(B)If a is the end point of P ′.
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Then a is M−unmatched. Since, M ′ = M △ P1 △ · · · △ Pt, then a is M ′−matched. Thus,
P ′ is not M ′−augumenting path. Contradiction!

2) ∃Pt, s.t. P
′ and Pt share a common edge.

Apply lemma1 to Pt,M △ P1 △ · · · △ Pt − 1 and P ′

claim, Pt is also the M △ P1 △ · · · △ Pt − 1−augumenting path of shortest length.

On the other hand, P ′ is (M △ P1 △ · · · △ Pt − 1) △ Pt−augumenting path by lemma1.

Thus, |P ′| ≥ |Pt|+ 2|P ′ ∩ Pt| ≥ k + 2

4


