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Matching
e Definition. For G, a subset U C V is called a vertex cover(or VC), if every edge in G is
incident to a vertex in U.

< U°€ is an independent set in G.

e Duality Theory. any |M| < any |V C|
< maz|M| < min|VC|

e Theorem1(Konig, 1931). For bipartite G, maz|M| = min|VC|.

e Proof. Let M be the maximum matching in G.
A M —alternating path P is "good”, if one of the ends in P is in A and not M —matched.
We define a subset U, such that for any edge ab € M, we will place exactly one of ab in U.

{b e U, if 3”good” M —alternating path having b as an end

a € U, otherwise

It satisfies for U to be VC.

Suppose not, Jab € E(G), s.t.a ¢ U,b ¢ U, which implies ab & M.
Claiml. V' € B,s.t.al’ € M.

Proof. Suppose not, then a id not M —matched.

As M is max, b must be M —matched.

By definition, ab is a "good” M —alternating path.(For b € B,b € U, iff b is M —matched
and 3 "good” M —alternating path having b as an end) (x)

Hence, b € U, a contradiction!

Claim2. 3 ”good” M —alternating path having b as an end point.
Proof. By the definition of U, since a & U, we have bt/ € U.

Thus, there is a "good” M —alternating path P’, having b’ as its end.

Let
P'b be P
p={"" €
P'¥ab, b P

Thus, P is a "good” M —alternating path having b as an end.

If b is not M —matched, then P is a M —augumenting path, which is contrast with Berge’s
Theorem(as M is max).

Thus, b isn’t M —matched.
By (%), we know b € U. Contradiction again.



Theorem?2. For bipartite G with m edges, let M be a matching. There is an O(m) time
algorithm for finding a M —augumenting path(if it exists).

Corollaryl. For bipartite G, 30(nm) time algorithm for finding a maximum matching.
Proof. Apply theorem?2 by at most 5 times.

Proof of theorem?2. Define a digraph as follows:
(1) direct the edges in M from B to A, and other edges from A to B.
(2) add new vertex x and arcs from x to all unmatched vertices in A.

We will take a BSF—tree T' with root x.It is enough to see if there is an unmatched vertex
beBinT.

——If 9 such b, then 3 a directed path from unmatched vertex a € A to b, which is an
M —augumenting path.

——otherwise, no such b, then, there is no M —augumenting path.

Corollary2. Given a maximum matching in bipartite G, we can find the smallest VC in
O(m) time.

Proof. By the proof of theorem2 and the definition of U in Theoreml.

Corollary3. For bipartite G, 30(nm) time algorithm for finding a minimum VC.

Proof. Combine Corollaryl and Corollary2.
Hopcroft-Karp theorem

Theorem3(Hopcroft-Karp). For bipartite G, there is an O(m+/n) time algorithm for
finding a maximum matching in G.

Lemmal. For general graph, let M be a matching and P be a M —augumenting path with
the least length. Let M’ = M A P. Then any M’'—augumenting path P’ satisfies that
|P'| > |P|+2|PN P

Proof. If PN P’ = @, i.e. P’ shares no edges of P. Then P’ is also an M —augumenting
path.Since P is the shortest one, we have |P’| > | P|, done!
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Figure 1:

From the figure, since P is the shortest M —augumenting path, c+c¢ >a+b+c¢



Similarly, a +a’ > a+b+c

Thus, ¢ >a+b,a’ >b+c

|P'|>d +b+d >({b+c)+b+(a+b)=(a+b+c)+2b=|P|+2b>|P|+2|PNP|
Lemma2. Let M be a matching in bipartite G, then in time O(m), we can find a maximal
collection of vertex-disjoint M —augumenting paths of the shortest length.

Proof. Similar to the previous proof.

——Find the first layer of the BF S—tree, in which there is an unmatched vertex in B. Then
pick such a vertex b.

——Back tracking to get a directed path P from x to b, which is of the shortest length.
——Delete all vertices of P in the BFS—tree.
——Repeat.

Thus, obtain a maximal collection of M —augumenting paths of shortest length.

H.K algorithm.

Let M =0

While there are M —augumenting path of length k

——Let k be the length of the shortest M —augumenting path

——Find a maximal collection of, say P;, Ps,--- , P, of vertex-disjoint M —augumenting path
of length k

——Let M=MAPLAP, A--- NP

Proof of Hopcroft-Karp theorem. By lemma2, we can implement each iteration in
O(m) time

Thus, it suffices to show that the HK algorithm stops in < 24/n iterations.

Claim. In each iteration, the value of k is increasing.

Suppose claim holds. Then by the corollary, after \/n iterations, |M*| < |M|+ y/n. There-
fore, after \/n more iterations, this will stop.

Proof of claim. Let P, P, ---, P, be the max collection of M —augumenting path of
length k.

Let M' =M A Py A --- A Py, P! be any M'—augumenting path.

We want to show |P'| >k + 1.

1) P’ is edge-disjoint with Py, Pa, -+, P;

Claim: P’ is vertex-disjoint with Py, Py, - , P;.

Proof: Since P’ is edge-disjoint with Py, Py, -+ , P, |P'| is M —augumenting path.
Assume P’ and P;. has a common vertex a.

(A)If a is the middle point of P’.

Then a is M —matched. Thus, there is a common edge in P’ and P,

(B)If a is the end point of P'.



Then a is M —unmatched. Since, M’ = M A P; A --- A Py, then a is M’'—matched. Thus,
P’ is not M’—augumenting path. Contradiction!

2) 3P, s.t. P’ and P, share a common edge.

Apply lemmal to P, M APy A --- A P,—1 and P’

claim, P; is also the M A P} A --- A P, — 1—augumenting path of shortest length.

On the other hand, P’ is (M A Py A --- A P, — 1) A P,—augumenting path by lemmal.
Thus, |P'| > |P| +2|P'NP| > k+2



